Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CANDIDATE
NAME

CENTRE NUMBER

CHEMISTRY

9701/31
Paper 3 Advanced Practical Skills 1
October/November 2019
2 hours
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 14 and 15.
A copy of the Periodic Table is printed on page 16.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
Total	

This document consists of 13 printed pages and 3 blank pages.

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 In this experiment you will determine the concentration of a sample of hydrochloric acid. You will do this by measuring the volume of hydrogen produced when an excess of magnesium reacts with the acid.

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

FA 1 is magnesium powder, Mg.
FA 2 is hydrochloric acid, HCl .
(a) Method

- Weigh the container with FA 1. Record the mass.
- Fill the tub with water to a depth of approximately 5 cm .
- Fill the $250 \mathrm{~cm}^{3}$ measuring cylinder completely with water. Hold a piece of paper towel firmly over the top, invert the measuring cylinder and place it in the water in the tub.
- Remove the paper towel and clamp the inverted measuring cylinder so that the open end is just above the base of the tub.
- Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to place $25.0 \mathrm{~cm}^{3}$ of FA 2 into the reaction flask, labelled \mathbf{X}.
- Check that the bung fits tightly in the neck of flask \mathbf{X}, clamp flask \mathbf{X}, and place the end of the delivery tube into the inverted $250 \mathrm{~cm}^{3}$ measuring cylinder.
- Remove the bung from the neck of flask \mathbf{X}. Tip all of FA 1 into flask \mathbf{X} and replace the bung immediately. Remove the flask from the clamp and swirl to mix the contents.
- Swirl the flask occasionally until no more gas is evolved. Replace the flask in the clamp.
- Measure and record the final volume of gas in the measuring cylinder.
- Weigh and record the mass of the container with any residual solid.
- Calculate and record the mass of FA 1 used.

Keep FA 2 for use in Question 2.

(b) Calculations

(i) Calculate the number of moles of hydrogen gas produced.
(Assume 1 mol of gas occupies $24.0 \mathrm{dm}^{3}$ at this temperature.)

$$
\text { moles of } \mathrm{H}_{2}(\mathrm{~g})=\text {.............................. mol }
$$

(ii) Calculate the concentration of hydrochloric acid in FA 2.

$$
\text { concentration of HCl in FA } 2=
$$

\qquad moldm ${ }^{-3}$
(iii) In this experiment the magnesium powder was in excess.

Calculate the mass of magnesium powder needed for complete reaction with all the hydrochloric acid in $25.0 \mathrm{~cm}^{3}$ of FA 2.

$$
\text { mass of } \mathrm{Mg}=
$$

(c) A student suggested two modifications to the method in (a) to give a more accurate value for the concentration.

For each suggestion, state whether you agree with the student and explain your answer.
Suggestion 1: Use magnesium ribbon rather than powdered magnesium; keep the rest of the experiment the same.
\qquad
\qquad
Suggestion 2: Use twice the mass of magnesium powder; keep the rest of the experiment the same.
\qquad
\qquad
(d) Another student carried out the experiment in (a) but used less magnesium than that calculated in (b)(iii).

State and explain the effect this would have on the calculated concentration of hydrochloric acid in FA 2.
\qquad
\qquad
\qquad

2 In this experiment you will determine the concentration of FA 2 by titration using aqueous sodium hydroxide.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

FA 2 is hydrochloric acid, HCl .
FA 3 is $0.100 \mathrm{moldm}^{-3}$ sodium hydroxide, NaOH . methyl orange indicator
(a) Method

Dilution of FA 2

- Fill the burette with FA 2.
- Run between 40.00 and $45.00 \mathrm{~cm}^{3}$ from the burette into the $250 \mathrm{~cm}^{3}$ volumetric flask.
- Record the volume used.
- Make the solution up to the $250 \mathrm{~cm}^{3}$ mark by adding distilled water.
- Shake the flask thoroughly to ensure mixing.
- Label this solution of hydrochloric acid FA 4.
volume of FA 2 used = cm ${ }^{3}$

Titration

- Rinse the burette with distilled water and then with a little FA 4.
- Fill the burette with FA 4.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 3 into a conical flask.
- Add several drops of methyl orange indicator.
- Perform a rough titration and record your burette readings.
- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form all of your burette readings and the volume of FA 4 added in

I	
II	
III	
IV	
V	
VI	
VII	
VIII	

(b) From your accurate titration results, obtain a value for the volume of FA 4 to be used in your calculations. Show clearly how you obtained this value.
$25.0 \mathrm{~cm}^{3}$ of FA 3 required cm^{3} of FA 4.
(c) Calculations
(i) Give your answers to (ii), (iii) and (iv) to the appropriate number of significant figures. [1]
(ii) Calculate the number of moles of hydrochloric acid that reacted with $25.0 \mathrm{~cm}^{3}$ of FA 3 .
moles of $\mathrm{HCl}=$ mol
(iii) Calculate the concentration of hydrochloric acid in FA 4.
concentration of HCl in $\mathrm{FA} 4=$ \qquad moldm ${ }^{-3}$
(iv) Calculate the concentration of hydrochloric acid in FA 2.
concentration of HCl in $\mathrm{FA} 2=$ \qquad $\mathrm{mol} \mathrm{dm}^{-3}$
(d) Calculate the maximum percentage error in the volume of FA 2 you added to the volumetric flask.
(e) In Question 1 and Question 2 you have determined the concentration of FA 2 by two different methods. Each method used has possible sources of error, for example in Question 1 the largest source of error is escape of gas.

Apart from this error, state and explain a source of error for each method.
Question 1 \qquad
\qquad
Question 2 \qquad
\qquad
[Total: 16]

Qualitative Analysis

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen;
- the formation of any precipitate and its solubility in an excess of the reagent added;
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.
If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

3 (a) FA 5 is a salt that contains two different cations and a single anion from those listed in the Qualitative Analysis Notes.
(i) Place a small spatula measure of FA 5 in a hard-glass test-tube and heat gently.

Do not inhale the fumes.
Record all your observations.
\qquad
\qquad
\qquad
\qquad
(ii) Pour a 4 cm depth of distilled water into a boiling tube. Add the remaining FA 5 and stir carefully until the solid has dissolved. This solution is FA 6.
Carry out the following tests on FA 6 and record your observations.

test	observations
To a 1 cm depth in a test-tube, add aqueous ammonia.	
To a 1 cm depth in a boiling tube, add aqueous sodium hydroxide, then	
warm the mixture.	

test	observations
To a 1 cm depth in a test-tube, add aqueous barium nitrate or aqueous barium chloride, then	
add dilute hydrochloric acid or dilute nitric acid.	

(iii) Identify the three ions in FA 5.

FA 5 contains \qquad and \qquad
(b) A student carried out Qualitative Analysis tests on a hydrated salt, FA 7, and concluded that it contained the ions $\mathrm{K}^{+}, \mathrm{Cr}^{3+}$ and $\mathrm{SO}_{4}{ }^{2-}$.
The relative formula mass of FA 7 is 499.3.
Determine the formula of FA 7.

The formula of FA 7 is \qquad . .
(c) FA 8 is a solution containing a single cation and a single anion, both of which are listed in the Qualitative Analysis Notes.
(i) Carry out the following tests and record your observations.

test	observations
To a 1 cm depth in a test-tube, add a few drops of aqueous acidified potassium manganate(VII), then	
add starch indicator.	

(ii) Identify the two ions in FA 8.

FA 8 contains \qquad and \qquad
(iii) Suggest an additional test you could carry out to confirm the presence of the anion in FA 8.

Carry out this test and record your result.
(iv) Give the ionic equation for the reaction you carried out using FA 8 and sodium hydroxide. Include state symbols.
\qquad

BLANK PAGE

BLANK PAGE

BLANK PAGE

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al}{ }^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
$\begin{aligned} & \text { zinc, } \\ & \mathrm{Zn}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}{ }^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-(\mathrm{aq})}$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

	$\stackrel{\square}{\circ}$
	은 튼
	\％
	®U镸
	毋 ¢ ¢ 高
	I
$\bar{\circ} \mathrm{E} \text { ¢ }$	® 은 言
\＆	๙ つ
	बの
	ヵ ᄃ

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cambridgeinternational．org after the live examination series．

